The Carpenter's Puzzle
(
CANTERBURY PUZZLES)
The Carpenter produced the carved wooden pillar that he is seen holding in the illustration, wherein the knight is propounding his knotty problem to the goodly company (No. 4), and spoke as follows: "There dwelleth in the city of London a certain scholar that is learned in astrology and other strange arts. Some few days gone he did bring unto me a piece of wood that had three feet in length, one foot in breadth and one foot in depth, and did desire that it be carved and made into the pillar that you do now behold. Also did he promise certain payment for every cubic inch of wood cut away by the carving thereof.
"Now I did at first weigh the block, and found it truly to contain thirty pounds, whereas the pillar doth now weigh but twenty pounds. Of a truth I have therefore cut away one cubic foot (which is to say one-third) of the three cubic feet of the block; but this scholar withal doth hold that payment may not thus be fairly made by weight, since the heart of the block may be heavier, or perchance may be more light, than the outside. How then may I with ease satisfy the scholar as to the quantity of wood that hath been cut away?" This at first sight looks a difficult question, but it is so absurdly simple that the method employed by the carpenter should be known to everybody to-day, for it is a very useful little "wrinkle."
Answer:
The carpenter said that he made a box whose internal dimensions were exactly the same as the original block of wood—that is, 3 feet by 1 foot by 1 foot. He then placed the carved pillar in this box and filled up all the vacant space with a fine, dry sand, which he carefully shook down until he could get no more into the box. Then he removed the pillar, taking great care not to lose any of the sand, which, on being shaken down alone in the box, filled a space equal to one cubic foot. This was, therefore, the quantity of wood that had been cut away.