"The Presence that stands Upon the stairs The unseen hands That move the chairs. The lights that play Across the wall, The stains that stay, The plates that fall, The mist , the chill, The wandering scents ... Read more of TO FREE A HOUSE FROM HAUNTING at White Magic.caInformational Site Network Informational
Privacy
Home Top Rated Puzzles Most Viewed Puzzles All Puzzle Questions Random Puzzle Question Search


THE GLASS BALLS.

(Combination and Group Problems)
A number of clever marksmen were staying at a country house, and the
host, to provide a little amusement, suspended strings of glass balls,
as shown in the illustration, to be fired at. After they had all put
their skill to a sufficient test, somebody asked the following question:
"What is the total number of different ways in which these sixteen balls
may be broken, if we must always break the lowest ball that remains on
any string?" Thus, one way would be to break all the four balls on each
string in succession, taking the strings from left to right. Another
would be to break all the fourth balls on the four strings first, then
break the three remaining on the first string, then take the balls on
the three other strings alternately from right to left, and so on. There
is such a vast number of different ways (since every little variation of
order makes a different way) that one is apt to be at first impressed by
the great difficulty of the problem. Yet it is really quite simple when
once you have hit on the proper method of attacking it. How many
different ways are there?


Answer:

There are, in all, sixteen balls to be broken, or sixteen places in the
order of breaking. Call the four strings A, B, C, and D--order is here
of no importance. The breaking of the balls on A may occupy any 4 out of
these 16 places--that is, the combinations of 16 things, taken 4
together, will be
13 x 14 x 15 x 16
----------------- = 1,820
1 x 2 x 3 x 4
ways for A. In every one of these cases B may occupy any 4 out of the
remaining 12 places, making
9 x 10 x 11 x 12
----------------- = 495
1 x 2 x 3 x 4
ways. Thus 1,820 x 495 = 900,900 different placings are open to A and B.
But for every one of these cases C may occupy
5 x 6 x 7 x 8
------------- = 70
1 x 2 x 3 x 4
different places; so that 900,900 x 70 = 63,063,000 different placings
are open to A, B, and C. In every one of these cases, D has no choice
but to take the four places that remain. Therefore the correct answer is
that the balls may be broken in 63,063,000 different ways under the
conditions. Readers should compare this problem with No. 345, "The Two
Pawns," which they will then know how to solve for cases where there are
three, four, or more pawns on the board.










Random Questions

Captain Longbow And The Bears
MISCELLANEOUS PUZZLES
A Packing Puzzle.
Measuring, Weight, and Packing Puzzles.
The Basket Of Potatoes.
Money Puzzles
Lady Belinda's Garden.
Patchwork Puzzles
The Royal Gardens
THE STRANGE ESCAPE OF THE KING'S JESTER
Painting A Pyramid.
Combination and Group Problems
The Barrel Puzzle.
Measuring, Weight, and Packing Puzzles.
The Grocer And Draper.
Money Puzzles
The Chinese Railways
MISCELLANEOUS PUZZLES
The Lion And The Man.
The Guarded Chessboard
The Digital Century.
Money Puzzles
Find Ada's Surname.
Money Puzzles
The Bun Puzzle.
Various Dissection Puzzles
The Skipper And The Sea-serpent
MISCELLANEOUS PUZZLES
The Grasshopper Puzzle.
Moving Counter Problem