The Haberdasher's Puzzle
(
CANTERBURY PUZZLES)
Many attempts were made to induce the Haberdasher, who was of the party, to propound a puzzle of some kind, but for a long time without success. At last, at one of the Pilgrims' stopping-places, he said that he would show them something that would "put their brains into a twist like unto a bell-rope." As a matter of fact, he was really playing off a practical joke on the company, for he was quite ignorant of any answer to the puzzle that he set them. He produced a piece of cloth in the shape of a perfect equilateral triangle, as shown in the illustration, and said, "Be there any among ye full wise in the true cutting of cloth? I trow not. Every man to his trade, and the scholar may learn from the varlet and the wise man from the fool. Show me, then, if ye can, in what manner this piece of cloth may be cut into four several pieces that may be put together to make a perfect square."
Now some of the more learned of the company found a way of doing it in five pieces, but not in four. But when they pressed the Haberdasher for the correct answer he was forced to admit, after much beating about the bush, that he knew no way of doing it in any number of pieces. "By Saint Francis," saith he, "any knave can make a riddle methinks, but it is for them that may to rede it aright." For this he narrowly escaped a sound beating. But the curious point of the puzzle is that I have found that the feat may really be performed in so few as four pieces, and without turning over any piece when placing them together. The method of doing this is subtle, but I think the reader will find the problem a most interesting one.
Answer:
The illustration will show how the triangular piece of cloth may be cut into four pieces that will fit together and form a perfect square. Bisect AB in D and BC in E; produce the line AE to F making EF equal to EB; bisect AF in G and describe the arc AHF; produce EB to H, and EH is the length of the side of the required square; from E with distance EH, describe the arc HJ, and make JK equal to BE; now, from the points D and K drop perpendiculars on EJ at L and M. If you have done this accurately, you will now have the required directions for the cuts.
I exhibited this problem before the Royal Society, at Burlington House, on 17th May 1905, and also at the Royal Institution in the following month, in the more general form:—"A New Problem on Superposition: a demonstration that an equilateral triangle can be cut into four pieces that may be reassembled to form a square, with some examples of a general method for transforming all rectilinear triangles into squares by dissection." It was also issued as a challenge to the readers of the Daily Mail (see issues of 1st and 8th February 1905), but though many hundreds of attempts were sent in there was not a single solver. Credit, however, is due to Mr. C. W. M'Elroy, who alone sent me the correct solution when I first published the problem in the Weekly Dispatch in 1902.
I add an illustration showing the puzzle in a rather curious practical form, as it was made in polished mahogany with brass hinges for use by certain audiences. It will be seen that the four pieces form a sort of chain, and that when they are closed up in one direction they form the triangle, and when closed in the other direction they form the square.