THE ROOKERY.
(
The Guarded Chessboard)
The White rooks cannot move outside the little square in which they are
enclosed except on the final move, in giving checkmate. The puzzle is
how to checkmate Black in the fewest possible moves with No. 8 rook, the
other rooks being left in numerical order round the sides of their
square with the break between 1 and 7.
Answer:
The answer involves the little point that in the final position the
numbered rooks must be in numerical order in the direction contrary to
that in which they appear in the original diagram, otherwise it cannot
be solved. Play the rooks in the following order of their numbers. As
there is never more than one square to which a rook can move (except on
the final move), the notation is obvious--5, 6, 7, 5, 6, 4, 3, 6, 4, 7,
5, 4, 7, 3, 6, 7, 3, 5, 4, 3, 1, 8, 3, 4, 5, 6, 7, 1, 8, 2, 1, and rook
takes bishop, checkmate. These are the fewest possible
moves--thirty-two. The Black king's moves are all forced, and need not
be given.